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SOUND PROPAGATION IN POLYDISPERSED GAS SUSPENSIONS 

N. A. Gumerov and A. I. Ivandaev UDC 534.2:532.529 

The majority of studies of acoustics of gas suspensions have investigated propagation 
of linear and slightly nonlinear waves in monodispersed mixtures [i-5]. The effect of poly- 
dispersion on propagation of linear monochromatic waves was first studied in [6]. However 
only the simple case of low mass content of the suspended phase was considered, in which case 
the contribution of particles of a given size to sound dispersion and dissipation is actually 
proportional to their mass fraction in the mixture. The present study will investigate unique 
features of sound wave propagation in polydispersed gas and vapor suspensions for arbitrary 
(not necessarily small) mass content of suspended particles or droplets for the first time. 
Some of the results were reported previously in [7]. 

i. General Considerations. Real gas suspensions of both natural and artificial origin 
are usually not monodispersed. They contain particles of quite differing sizes, which often 
differ greatly from each other. The dispersion composition of such mixtures can be character- 
ized at each point in space by a particle distribution function over size N(a, r, t), as well 
as the minimum amin(r~'t) and maximum amax(r, t) radii. We have 

am~x 

dn(a, r, t) = N (a, r, t) da, n(r, t) = S N (a, r, t) da. 
amin 

Here a is the particle radius, r is the radius vector of the point, t is time, dn is the 
number of particles per unit volume having radii from a to a + de, n is the total number of 
particles of all sizes per unit volume of mixture at the space-time point (r,t) . 

We will consider the quite general case of a mixture with phase transitions at phase 
separationboundaries. In the process of motion of such a mixture, the particle (droplet) dis- 

Tyumen'. Translated from Zhurnal Prikladn0i Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 115-124, September-October, 1988. Original article submitted May 6, 1987. 

706 0021-8944/88/2905-0706512.50 �9 Plenum Publishing Corporation 



tribution over size changes not only because of motion of droplets of various sizes relative 
to each other, but also because of direct change in the size of individual droplets due to 
evaporation (condensation). The minimum and maximum radii do not remain constant either. 

We will limit ourselves below to consideration of an initially homogeneous suspension, 
i.e., we assume that the initial unperturbed state is homogeneous over space and is character- 
ized by some initial particle distribution over size N0(a0) (the subscript 0 will denote un- 
perturbed values of functions and parameters below). We also assume that the number of parti- 
cles with radii from a to a + da per unit mixture volume is high and that motion of this set 
(fraction) of particles can be described by methods of the mechanics of heterogeneous media 
[8] as motion of a monodispersed continuum with characteristic particle radius a. We will then 
term all the monodispersed fractions in the mixture the polydispersed phase.* We will assume 
these fractions to be known beforehand and distinguish them by their unperturbed particle 
radius a 0. Thus a 0 will serve as the "number" or "index" of a fraction, thereby acting as some 
Lagrangian variable a = a 0. Then the current radius a ~ a(a, r,t). 

We introduce N(a, r, t), treating N(a, r, t)da as the number of particles at the space- 
time "point" (r, t) , initiaily having a 0 = a: a(~, r, t) = ~ + a'(a~, r t); N(~ r, t~ -- N c~) + N' 

. / } -- O~ 
(a,r ,  t ) .  Here and below the przme denotes small perturbations ([a I << a0, INI << No), the 
subscript I denotes parameters of the carrier phase, while 2 denotes parameters of the parti- 
cle "phase." 

The mass, velocity, and temperature of particles of "phase" 2 are functions of the La- 
grangian variable a: 

4 
m 2 = m  2(a , r ,  t ) = y ~ a  3(a , r ,  t) p~, v 2 = v  2 ~ , r , t ) ,  T 2 =  T 2(7,r ,  t) 

(0~ = c o n s t  i s  t h e  t r u e  d e n s i t y  o f  t h e  p a r t i c l e  m a t e r i a l ) .  I t  s h o u l d  be u n d e r s t o o d  t h a t  t h e  
v e l o c i t y  and t e m p e r a t u r e  o f  p h a s e  1 do n o t  depend  on a .  As f o r  t h e  i n t e n s i t i e s  o f  i n t e r p h a s e  
e x c h a n g e  be tween  p a r t i c l e s  and g a s ,  t h e s e  depend  on t h e  i n t e r n a l  v a r i a b l e  a , in  v i ew  o f  t h e  
d e p e n d e n c e  o f  t h e  l a t t e r  on p a r t i c l e  p a r a m e t e r s .  

The c o n c e p t s  o f  vo lume  c o n t e n t  ~ j  and mean d e n s i t y  pj o f  t h e  j - t h  p h a s e  ( j  = 1, 2; ~:  + 
a2 = l )  [8] can  be g e n e r a l i z e d  n a t u r a l l y  t o  t h e  c a s e  o f  a p o l y d i s p e r s e d  s u s p e n s i o n :  

A 
a m a x  

r ,  = t) N t) 
4 

a m i n  
^ ^ 

(ami n and ama x are the minimum and maximum particle radii in the unperturbed state). 

2. Fundamental Equations. We will limit our further examination to one-dimensional 
motions with the condition of smallness of the medium parameter perturbations. We will il- 
lustrate the derivation of linear differential equations for the motion of the polydispersed 
mixture from the linear equations for a monodispersed mixture using the example of the equa- 
tion of conservation of mass of the dispersed phase. 

Let dp2 = m2Nda be the mean density of the monodispersed fraction of particles charcter- 
ized by the parameter a. The linearized equation of conservation of mass of this quasimono- 
dispersed fraction can be written in the form [3] O(09~)/Ot+(dP2o)OU~/Ox=]Nod$ . Integrating 
this equation over a from ami n to ama x, we obtain 

A 
amax a m a x  r 

o'v + No (4  m,o 6)  . = 

amin amin 
~ax 

where p~ is the perturbation of the mean density of the dispersed phase as a whole: P2= 

z, t) No + N' 0] �9 

With similar considerations we can write the linearized system of equations for planar 
one-dimensional motion of a polydispersed mixture of vapor with droplets, generalizing the 
system of equations of motion of a monodispersed mixture of [3]: 

*The polydispersed "phase" is not a phase in the usual sense of this word, since we do not 
apply to it the concepts of mean phase velocity and temperature. 
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amax amax amax 
j. oo, __ y 

% + Olo = - ~ o / d a ,  d ~  - - ot -g7 A orn~o ~ N o /  

a m i n  a m i n  a m i n  

( 2 . 1 )  

a m a x  t . , , . , !  

~ ~ ~ ~ OV 2 
Plo ~Ov~ + OP'oz _ N ~  m2o --87- = ~ ( 2 .2 ) 

a m i n  

a m a x  

-57-0T[ OP'ot N~176 m~~ ot p].oc~ - -  a~o = __ q ~ ;  ( 2 . 3 )  

O m i n  

t q ~ o + q L z = - - f l o ,  P ' =  C~ ( p ' ~ + r p 2 ) +  Po a~o?l To T~. ( 2 . 4 )  

Here Eq. (2.1) is the equation of conservation of mass of the carrier and dispersed phases; 
Eq. (2.2) is the equation of conservation of momentum of the gas and the dispersed particle 
fraction denoted by the parameter a; Eq. (2.3) is the equation of heat influx for the gas and 
particles of the selected fraction; Eq. (2.4) is the equation of thermal balance on the surface 
of the particle identified by the parameter a and the equation of state of the gas; p is the 
pressure in the gas; qjo is the thermal flux from phase j to the surface of an individual 
particle; ~ is the specific heat of vapor formation; Yl is the adiabatic index of the gas; 
r = P~o/P~ is ratio of the true phase densities; cj is the specific heat of the material of 
phase j (at constant pressure for the gas); CI is the speed of sound in the pure gas; quanti- 
ties dependent on the parameter a are denoted by the symbol ~. 

The system of Eqs. (2.1)-(~.4) is complete, if expressions are specified for the local 
mass, momentum, and heat fluxes: j, f and qjo, respectively. According to [3], we have 

~ V l - v ,  V I ~ m . , o r C  1 T 8 - T  o , T O ( t - - r )  
/ = m"-o ~* - ' ] =  z - -  T s =  

n o 7~ ' ZoO~ o 

qlo m2o Plot1 T P~o 1__~ Ta T2 -- Ta 
"gTl "i~T2 

p 
- - p ,  

(2.5) 

where TN is the saturation temperature related to pressure by the Clapeyron--Clausius equation; 
T O is tNe surface temperature of an individual particle; �9 are characteristic complex "times," 
which consider the nonsteady-state nature of interphase interaction processes and heat fluxes, 
of harmonic oscillations, at frequency m, are defined by the expressions [9] 

�9 ~ =x~ i +  ~i) I/~--~ic0%1 , ~A=--7~, 

2 ~2 ~ P~  ~ = z~-- (o~j)  ~/2 (1 = t ,  2), 

f 5 [3z -- (3 + z ~) th z] ~j 
lql(z) =~-@--~, q,,(z)-- z ~ (thz--z) ., Xj--  o pjcj 

( 2 . 6 )  

Here Di is the dynamic viscosity of the gas; k is the thermal conductivity coefficient; ~ is 
the accommodation coefficient. The closed system of Eqs. (2.1)-(2.6), obtained with the as- 
sumption of smallness of the volume content of the suspended phase ~2 << i, can be used to 
analyze the acoustical properties of polydispersed mixtures of vapor with droplets of gas with 
particles. 

3. Dispersion Relationships. We will seek solutions of system (2.1)-(2.6) in the form 
of progressive waves for perturbations of the parameters X': 
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%' = A x exp [i ( k , x  - -  ~t)] = A z exp ( - -  k**@ exp [~ (kx - -  ot)] 
(3.z) (k,  = k + ik**, C v = m/k, C g =  d~/dk, ~ = 2~Cvk**/@~ 

where A• is the complex amplitude of the perturbation in the parameter X; i is the square root 
of minus one; k, is the complex wave number; k** is the linear attenuation coefficent; Cp, Cg, ~ 
and 0 are the phase velocity, group velocity, and wavelength attenuation constant, respectively. 

T' and de- Here, in contrast to the monodispersed case [3], the perturbations v'2~ 2, T'o 
pend not only on (x, t), but also on the internal dispersed phase parameter a. Thus, the 
amplitudes of the perturbations Av2 , AT2 , ATo are functions of a, which in accord with the 
notation introduced above will be denoted below by the symbol ~. 

We denote by ~> the action on { of the linear operator: 

x amax amax 

<~ = ~ J ~  d~ ~ o ~ d a  = t Nom,ofda" 

\ a m i n  / / \ a m i  n a m i n  

^ 
In view of the definitions used, if f is not dependent on a, then </>~]. Substituting 
Eq. (3.1) in Eqs. (2.1)-(2.6), we have 

- -  io)Aol 6 ik ,  PloAv 1 + T o  P20 7-~ ---- 0, 

re1 / ATS~7-- A'T~/S 
- ~o, Ao ,  + ~k,~,.o <~0 .>  - ~,,o <... = o.  

- ~p,oAo, + ~k,A~ + P.,o [\ W /-- ~ J = o, 

- -  i~ + i(OaloAp + PlOCi ~"~- = O; 
TT1 

i(0-~v2 Avl - -  A'v2 Art ~ - -  ~ ,  -~- ~ = O, - -  ~(OAT2 -~- AT2 ~ ATe  

AT1 - -  ATo AT 2 - -  ATo ATo - -  ATS 
~ ,  + ~ ,  = O; 
"~gl Tcr2 ~o 

Av C~ (Am + rAo2 ) _  Po , r ( l - - r )  
- -  (X10 Y--"-'~ W ATI = 0, ATS - - '  ~ ~ lo A v 

TOl ~ TO- 2 ~ 0~1~0 TTI~ DOc2 TT2 " 

(3.2) 

= o, (3 .3)  

=0 (3.4) 

It follows from Eq. (3.3) that the amplitudes Av2, AT2, and ATo can be expressed in terms 
of characteristic relaxation times which are known functions of a (see Eq. (2.6)), and the 
amplitudes Avl , ATI , ATS which do not depend on a: 

] , 2  " - - ' . - - ~ ,  Avl ,  AT2-- . ~* 
l -- ~o% t -- t(O~T2 ( 3.5 ) 

A~~ = ~-7 + ~ + ~*~. -*~ 0 - ~ ; . )  ~ A~ + =~ A~  . 

Substituting Eq. (3.5) in the corresponding expressions of Eq. (3.2), all the perturba- 
tion amplitudes can be brought out from within the averaging operator (). As a result, from 
Eqs. (3.2), (3.4), we obtain a homogeneous system of six linear algebraic equations in the 
amplitudes Apl , Ap2 , Avl , Ap, ATI , ATS. 

The dispersion dependence of wave number on oscillation frequency ~ with which we are con- 
cerned can be found from the condition of a nontrivial solution of this homogeneous system and 
can be written in the form [3] 

(Czk./@ ~ = V (@@ (~), (3.6) 

709 



where V(m) and O(~) are complex functions of frequency ~, the first of which is responsible 
for description of dispersion and dissipation due to interphase friction, while the second is 
related to interphase heat exchange. They depend on the thermophysical properties of the 
phases and the spectral composition of the mixture: 

v (~) = l + ~ ( %  - ') <7>  - ~,o ~ ~ - ~ . / ~ .  
+mr<~> ' ~ =  l - - i~:  ' ( 3 . 7 )  

O ( m ) =  I -  m r  

t - - r  ~ ] m r  / l - - r \ 2  ~ 

J (3.8) 

~ I (1 " - * ~  - - . o ! . 1 ~ ( t  ~ ~  ~(OTOtel), e 3 e., = . ~ . . . .  im zoe l )  
t lOT o 

(m = P20/P10 i s  t he  r e l a t i v e  mass c o n t e n t  o f  p a r t i c l e s ,  ~ = ~/C~ is  t he  d i m e n s i o n l e s s  h e a t  of  
vapor  f o r m a t i o n ) .  

D i s p e r s i o n  e q u a t i o n s  ( 3 . 6 ) - ( 3 . 8 )  d e s c r i b e  t he  a c o u s t i c a l  p r o p e r i t e s  of  p o l y d i s p e r s e d  
vapor  and gas su spens ions  wi th  an a r b i t r a r y  i n i t i a l  d i s t r i b u t i o n  of  p a r t i c l e s  over  s i z e .  In 
t he  s p e c i a l  case  of  a^monodispersed  su spens ion ,  where the  p r o b a b i l i t y  d e n s i t y  i s  a Dirac  
6-function, i.e., N0(a) = n05(a - a0), we have <g) = g(ao, ~), (~) = ej(ao, 0)) (] = I, 2, 3) and 
Eqs. (3.6)-(3.8) naturally transform to the expressions known in [3]. For m = 0, when there 
are no particles, V = 6) = i, i.e., wave dispersion and dissipation are absent from. a gas with- 
out particles. For a polydispersed mixture of gas with solid particles (no phase transitions, 
T o = ~) the function O(~) (Eq. (3.8))in dispersion relationship (3.6) has a significantly 
simpler form: 

- C 2 H r (o~) H r  = m - -  <h'r>, 0 ( @ = 1 + ( 7 ~ - - t )  i + H  r(co)'  % 

r c  1 T~ 

( 3 . 9 )  

which also agrees with the known result for monodispersed gas suspensions [3]. 

At moderate gas phase pressures, r << i. In this case, also considering ~2 << i, we can 
obtain from Eq. (3.7) a simpler expression for the dispersive-dissipative function V(m): 

v (~) = t + H~ (o~), H ,  = m <'~>, 
t - -  ~.. ~ .1/21 

(3.lO) 

If there are no phase transitions, then it is reasonable to consider propagation of 
acoustic waves in a gas suspension consisting of a finite number of particle fractions, dis- 
tinguished not only by their size, but also their thermophysical properties. Examples of 
such media are various types of smoke, gas suspensions contaminated by impurities, etc. In 
this case the relaxation "times" for each dispersed phase will differ not only because of 
particle size, but also because of thermophysical properties of the phases. The dispersion 
relationship describing sound propagation in a multiphase gas suspension was presented in 
[7]. It can be derived from a system of the type of Eqs. (2.1)-(2.6) and has the form of 
Eqs. (3.6), (3.9), (3.10), where by H v and H T we understand 

N N N 

H v  = mhhv1~ , H T  = ml~ -7-7. h rh ,  X m h  -= m .  
h = 2  ~ = 2  ]- h = 2  

Here Ck, m k are the specific heat of the particle material and the relative mass content 
of the k-th dispersed phase (k = 2, ..., N); hvk , and hTk are obtained when in the correspond- 

" ~ 0 0 - - -  C 0 ing expressions for hv, hT and ~in Eqs. (3.9), (3.10), (2.6), we take a = a k, P2= p~,c~-- h (Ph 
is the density of the particle material in dispersed phase k). 
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It is clear from Eqs. (3.6), (3.9)-(3.11) how the dispersion relationship can be con- 
structed when the gas suspension consists of a finite number of particle types differing in 
thermophysical prope[ties, and in each type there exists a distribution of particles over size 
with a function Nk0(a k) (where a k is the Lagrangian parameter of polydispersed phase k). The 
functions H v and H T appearing in Eqs. (3.9), (3.10) are as follows: 

N N 
c h Ho:  (3.12) 

h=2 h=2 -~1 

( ()r~ is the averaging operator with function Nk0(ak)). 

Of special interest is the aerosol-type suspension widely found in practice with a low 
particle content (m << i). Preserving only terms linear in m in Eqs. (3.6)-(3.8) and consid- 
ering that r << i, we find the simplest dispersion relationship for one-component aerosols 
with phase transitions: 

= + @ (vo + e ~  vo = 
(3.13) 

(ej and hv are given in Eqs. (3.8), (3.10)). Here, in contrast to Eqs. (3.6)-(3.8), we have 
additiveness of the contributions of interphase friction and heat-mass exchange to dispersion 
and dissipation of perturbations. However, in view of the linearity of the operator () , it 
is evident that Eq. (3.13) can be obtained from the corresponding relationship for a monodis- 
persed aerosol by simple integration over the masses of the fractions. 

If in Eq. (3.13) we replace @0 by (YI -- I)HT/m, then we find a dispersion relationship 
for describing the acoustical properties of polydispersed aerosols of the gas-solid particle 
type. We note that it is applicable for any oscillation frequencies satisfying the re- 
quirement of acoustical homogeneity of the suspension. With the aid of this relationship one 
can easily obtain explicit expressions for velocity and attenuation coefficient of weak mono- 
chromatic waves in an aerosol mixture of gas and solid particles. Testing shows that at suf- 
ficiently low frequencies, where the role of nonsteady-state interphase interaction effects 
is small, these expressions coincide with those obtained for special cases using other consid- 
erations in [6]. 

4. Analysis of Results. To study the features of sound propagation in polydispersed 
suspensions, it is sufficient to consider the simplest case of a mixture without phase transitions, 
the acoustical properties of which are described by dispersion relationship (3.6), (3.9), 
(3.10). To supplement those introduced above, we now use the following dimensionless quantities 
and parameters characterizing the composition, thermophysical and acoustic properties of such 
a mixture: 

P h  ~1cl c = c~ 2 P~a,  f2 - -  co~r~,, 1 t = l g g ,  
= ~'---~-' C<' T V*--- 9 ~Ll '  

_ _  - -  g 

__ a__~, N o  (a)  fir (a)  d a  - -  I a = - -  K = lc, C l z r , ,  

K = K ~  + iK . , ,  Cp  = CpzC1,  Cg = C g / C , .  ~ = 2 n K 2 / K  ~. 

(4.1) 

Here a, is a representative radius, selection of which will be discussed below; N(a) is the 
probability density in the initial state. 

The dimensionless relationships establish the equivalence of all gas suspensions with 
identical thermophysical properties, identical dimensionless spectrum, and identical mass con- 
tent m. For example, for equality of all other dimensionless parameters, all monodispersed 
suspensions are equivalent, independent of particle radius; also equivalent are all suspensions 
with a uniform spectrum having identical ratios amax/amin, etc. At the same time, if two sus- 
pensions differ in their dimensionless spectra with other parameters equal, then generally 
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speaking, their dependences of wave number on dimensionless frequency will differ function- 
ally. 

Despite the obviousness of the above and the fact that it has been confirmed experiment- 
ally [6], in the literature one meets with the opinion ([i0], for example) that by introducing 
some effective radius one can achieve a situation in which the acoustical properties of the 
polydispersed medium will be describable within the framework of a monodispersed model. 

We will consider high- and low-frequency asymptotes of the dimensionless wave number 
following from Eqs. (3.6), (3.9), (3.10), (4.1)_as Q-+~ and Q-+0 Terms ~r are negli- 
gible in comparison to unity; we will consider c, Pr~, m finite. The terms of the expansion 
of concern to us have the form 

m [ 3 ~/ ' r  ('1 -I- i)1[~o~ (]/r~rl)  , -2  ,~ . - t l "  ~a~,2~) + ( 4 . 2 )  
( K / ~ ) ~  N t + ~ 7 

+ (y) = l + 2 - t )  

(K/~)~;.o ~ F~ I + ~ ( 4 . 3 )  2 ( t  ' (r~l) 

= '  ~ { . ~  (t -+- , 0  (i + m7~1) 

Here Ce i s  t h e  e q u i l i b r i u m  d i m e n s i o n l e s s  speed  of  sound in  t h e  m i x t u r e ;  a i ,  j a r e  mean r a d i i  
d e f i n e d  by 

1 

If? ]I 
a m f l x  a m a x  

- _ a i j  ( 4  4 )  ai,i = N o (a) a*da N O ~a) a j d a  i :~: ], a~,j = . 
(l~t 

, t .  ~nrlill J !  Larnin 

The mean radii introduced in this manner lie on the segment [amin, amax] and have the symmetry 
property a i,j = aj,i. 

According to Eqs. (4.2), (4.3) (Eq. (4.2) can be used at frequencies which do not dis- 
turb the acoustical homogeneity of the medium [3]), sound attenuation in the polydispersed 
mixture at high or low frequencies is not determined directly by the form of the function N0(a), 
but rather by the integral characteristics ai, j. Therfore, if we choose as the dedimensionaliza- 
tion parameter a, the radius a~, 2 (or, if r is very small, aa,1), then in light of that choice 
as, 2 = 1 (a3, I = i) and attenuation of high frequency perturbations in the polydispersed mixture 
with arbitrary spectrum will coincide with attenuation in a monodispersed mixture with a 0 = 
a,. The same can be said of the role of as, a for low frequencies. 

We will consider the effect of choice of the dedimensionalization parameter a, on dimen- 
sionless functions of the wave number. As an example we will consider the graph of the wave- 
length attenuation decrement o(log ~) = o(~), which for a monodispersed suspension has a char- 
acteristic bell-shaped form (Fig. i, dashed line), let the dimensionless function N(a)be 
fixed. Then the graphs of o(N1) and o(N2) (nj = log flj, ~j being the dimensionless frequency 
in the sense of the dedimensionalization parameter a..j (j = i, 2)) will obviously transform 
into each other upon simple displacement along the abscissa ~, since ~],----Igfl I -~ IgQ,, ~ 2[g 
( a , / a , 2 )  = ~l, -1- 2 lg (a,1/a,~). 

We now introduce the concept of a reference curve qrOl) It follows from the defin- 
ition of Eq. (4.4) that for a monodispersed mixture with radius a0, all ai, j = a 0 . We term 
the curve of the function o(N) for the monodispersed medium the reference s = ~r(H) , if for 
the dedimensionalization parameter a,, the radius a 0 is used. Hence for a monodispersed mixture 
for any i # j we have @(q~./) ---- ~r(~]) (~,j == ]g ~,~,~,j being the dimensionless frequency in the 
sense of the dedimensionalization parameter ai,j). 

We will consider the graph of o(D) for a polydispersed suspension as compared to the 
reference. For a, let us choose the radius a~, 2. Then in the high-frequency region, the graph 
of o(~3~ 2) and Or(,]3.,) coincide asymptotically. At low frequencies, in view of the Helder 
inequality ~,.:~ == a~,:~a.~,~ ~ I and the monotonic growth of o(~) we have o0]:~,~) ~ Or(q~.~) . If 
we choose a~... = as, ~ then although asymptotically coinciding at low f_requencies the graphs of 
o(Ns,s) and Or(~l~,3) =: qr(N~.~) differ at high frequencies, while from a~ := a:~/a:,.~ ~ ~ and the 
monotonic decrease of o(N) we obtain a(q~,.~) ~ @r(N~.~) If we choose a, from the condition 
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%,~ ~ a, ~ a~.~, a,= % , then in both high and low frequency regions ~(~]) ~ ~9(~) . With such 

a choice of a~, there is a correspondence in the characteristic regions of change in the param- 
eter q where the functions o(q) and ~0l) reach their extremal values. 

Figures 1-6 show results of calculating sound speed an_d attenuation in gas suspensions 
with parameters m = i, Yi = 1.4, Pr i = 0 72, r = 4 3.10 -4 �9 . , c = 0.87, corresponding to mixtures 
of aluminum dust with air at a pressure of 0.i MPa and temperature of 293 K. For the dedimen- 
sionalization parameter we take the radius a~,~, which according to the Helder inequalit Z lies 
in the interval [aa, ~, as, 3]. In this case, N(~) satisfies the normalization condition a i,a = 

~ m a x  a m a x  a m a x  

1,  i . e . ,  we h a v e  a duaZ n o r m a l i z a t i o n  I N(a) aada= ~ IV(a) a~da, ~ N ( a ) d a = i .  
ami n a~il l  a ~  

As an illustrations we choose the following functions defined on the interval [amin, 

amax]: 

t )  F~(~) = const ,  2) ~V(a) = c o n s t . E  -~, 

3) N ( a )  = n ,6 (a  - -  -Q) + n .6 (E  - -  ~-,), 

which characterize two forms of uniform distribution (i, over radius; 2, over mass) and a two- 
fraction composition (distribution 3). In view of the dual normalization N(a) of distributions 
i, 2 can be specified by one independent parameter ~ = amax/amin, while that of distribution 

3 ' 3 3 requires two parameters ~ = a2/a i and, for example, 9 = mi/m'2- (nia0/(n~a2): 

4 - 5 - - 
1) const  = --~ (1~ 5 - -  i ) / [ ( l ~  "~ - -  J )  ('t~ - -  J ) ] ,  a m i  n .~- .-~ ( /~  r - -  ~ ) / ( 1 ~  5 - -  J ) ,  a r e a  x = '~)Qmil ' l t  

2)  const = 8 , ' / l ( ~  + 1)~(~ - :~)1. a ~ .  --  2/(r + t ) .  ama~ = ~ a ~ . .  

The dependences of phase velocity ~p and attenuation decrement o on dimensionless fre- 
quency ~4,3 for suspensions with distributions 1 and 2 are shown in Figs. I, 2, respectively. 
The dashed lines are the limiting cases ~ = i, corresponding to a monodispersed mixture (ref- 
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erence curves). For distribution i, aside from ~ = i, only the case ~ = = (solid lines) is 
shown, since even in those limiting cases ~ = i and ~ = ~ do not differ greatly; the numbers 
along the lines of Fig. 2 are values of the parameter ~. It is obvious that with increase 
in ~ (broadening of the spectrum) the maximum wavelength attenuation decrement decreases 
markedly, while the dependence of the speed of sound on frequency becomes less intense. 

Figures 3-6 show dispersion and dissipation of weak waves in a gas suspension with dis- 
crete spectrum 3. Figures 3, 4 Were constructed for fixed ~ = I and variation of the param- 
eter ~ (numbers along lines). For Figs. 5, 6, we have a fixed ~ = i0, while the numbers along 
the lines denote values. The vertical dashed lines of Figs. 3, 5, are characteristic 
frequencies ~ = a~ and ~i =a~2(a1~.a2) , while the horizontal lines of Figs. 4, 6 are 
"shelf" levels, correspondin$ to the equilibrium speed of sound in the small particle space 
~ = {(1 + m : ) / [ ( t  + m,)(l § m~c?~)l}-~/~, m~ = m~l( l  + ~ ) .  
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